If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9x^2-2=718
We move all terms to the left:
9x^2-2-(718)=0
We add all the numbers together, and all the variables
9x^2-720=0
a = 9; b = 0; c = -720;
Δ = b2-4ac
Δ = 02-4·9·(-720)
Δ = 25920
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{25920}=\sqrt{5184*5}=\sqrt{5184}*\sqrt{5}=72\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-72\sqrt{5}}{2*9}=\frac{0-72\sqrt{5}}{18} =-\frac{72\sqrt{5}}{18} =-4\sqrt{5} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+72\sqrt{5}}{2*9}=\frac{0+72\sqrt{5}}{18} =\frac{72\sqrt{5}}{18} =4\sqrt{5} $
| 7x+9x-96=72-8x | | (-5)(+3x)=10 | | (7x+1)=3 | | −4(3m−3)+(−10+8m=) | | -4(3x-1)=-6 | | (14,6+3x)/4=10 | | 8x+15=6x+12 | | n+4/3=1/3 | | 5d=76 | | 7(4-x)=42 | | 2=100-5a | | 2p=1/4÷160 | | 8y=(6y+10) | | 1/4÷160=2p | | D(t)=2,280-60t | | 4b+8=2b+2 | | 400-20x7000000000000000000000000+4= | | y=-3(7)+11 | | y=-3(7)-11 | | 6p+4+p=3p-8 | | C=36x+200R=76 | | 67-p=18 | | 5(-3x-11)-7x=1 | | 6(8c-1)-14=46c+6 | | -6(t+5)=12 | | -(3x+11)=1 | | 0=2/3x+-3 | | –(3x+11)=1 | | 5(6x+4)=-10 | | 8x-1=14x+2 | | 20=(-8)+5x(-2) | | 8x-21=14x+2 |